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Mechanical ventilation is a crucial component of the supportive care
provided to patients with acute respiratory distress syndrome. Current
practice stipulates the use of a low tidal volume (VT) of 6 ml/kg ideal
body weight, the presumptive notion being that this limits overdis-
tension of the tissues and thus reduces volutrauma. We have recently
found, however, that airway pressure release ventilation (APRV) is
efficacious at preventing ventilator-induced lung injury, yet APRV
has a very different mechanical breath profile compared with conven-
tional low-VT ventilation. To gain insight into the relative merits of
these two ventilation modes, we measured lung mechanics and dere-
cruitability in rats before and following Tween lavage. We fit to these
lung mechanics measurements a computational model of the lung that
accounts for both the degree of tissue distension of the open lung and
the amount of lung derecruitment that takes place as a function of
time. Using this model, we predicted how tissue distension, open lung
fraction, and intratidal recruitment vary as a function of ventilator
settings both for conventional low-VT ventilation and for APRV. Our
predictions indicate that APRV is more effective at recruiting the lung
than low-VT ventilation, but without causing more overdistension of
the tissues. On the other hand, low-VT ventilation generally produces
less intratidal recruitment than APRV. Predictions such as these may
be useful for deciding on the relative benefits of different ventilation
modes and thus may serve as a means for determining how to ventilate
a given lung in the least injurious fashion.

ARDS; mechanical ventilation; predictive computational model; lung
injury

MECHANICALLY VENTILATING PATIENTS with acute respiratory dis-
tress syndrome (ARDS) is a delicate balance between provid-
ing sufficient inspired volume with each breath to ensure
adequate gas exchange, while at the same time avoiding
ventilator induced lung injury (VILI). The damage resulting
from VILI is a consequence of the repetitive stresses and
strains that are applied to the lung tissues. These stresses and
strains are reflected in the way that pressure, flow, and volume
manifest at the airway opening throughout each breath, re-
ferred to collectively as the mechanical breath profile. Clearly,
the mechanical breath profile contains important information
about the potential for VILI to occur. Extracting this informa-
tion, however, requires a quantitative understanding of how the
mechanical breath profile translates into stress and strain at the
tissue level, and then to tissue damage.

Presently, the link between the mechanical breath profile and
VILI is understood only in general terms that are used to guide
mechanical ventilation for the overall ARDS patient popula-
tion. Thus, low tidal volumes (VT) are used to reduce damage
caused by tissue overdistension, known as volutrauma, with the
goal for all ARDS patients being VT � 6 ml/kg ideal body
weight. Similarly, positive end-expiratory pressure (PEEP) is
used to avoid the so-called atelectrauma that results from
repetitive closure (derecruitment) and reopening (recruitment)
of alveoli and small airways with each breath. It has been
recognized for some time that the nature of the pressure-
volume (PV) relationship of the lung may contain the infor-
mation necessary to set the appropriate level of PEEP for a
given patient (1, 14, 18, 32, 34, 48), but the precise manner in
which PEEP should be set remains controversial (13, 17).
Furthermore, almost all studies have neglected the important
fact that recruitment and derecruitment are dynamic processes
that depend on time as well as pressure (11). Finally, and
perhaps most importantly, ventilation strategies that are effi-
cacious for the ARDS patient population as a whole may be far
from optimal in any given patient, especially given that ARDS
is such a heterogeneous condition.

There is thus a critical need for predictive methods that can
link a particular mechanical breath profile to VILI production
in a given patient. Toward this end, we used a computational
model to link measurements of airway pressure (Paw) and flow
to tissue overdistension and repetitive recruitment in a rat
model of ARDS. We then used the computational model to
investigate how these two VILI mechanisms are modulated by
the mechanical breath profile in two clinically established
modes of mechanical ventilation.

METHODS

Animal preparation. All experiments were approved by the Animal
Care and Use Committee of SUNY Upstate Medical University and
conducted in accordance with National Institutes of Health guidelines.
Ten male Sprague-Dawley rats (390–515 g) were anesthetized with
0.1 mg/kg ketamine and 0.011 mg/kg xylazine. A tracheostomy was
performed, and a 2.5-mm cannula (Harvard Apparatus, Holliston,
MA) was inserted and affixed to a Flexivent small-animal ventilator
(SCIREQ, Montreal, QC, Canada). Baseline ventilation (VT � 6
ml/kg, PEEP � 5 cmH2O, 55 breaths/min) was applied for 5 min to
allow the animals to stabilize. Lung injury was induced by instilling
2.5 ml/kg of 0.2% Tween 20 in normal saline into each lung, as
previously described (27, 28). Following instillation, the rats were
ventilated (VT � 16 ml/kg, PEEP � 0) for 10 min to induce a modest
degree of VILI, resulting in a reduction in alveolar size and increases
in alveolar instability (27), conducting airway strain, and alveolar
heterogeneity (28). The animals were not paralyzed, as is sometimes
done to prevent spontaneous breathing activity from corrupting mea-
surements of lung impedance, but there was no evidence of such
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activity in the present study, and the model fits were all of good
quality (see below).

Physiological measurements. All animals began the experiment in
the healthy state from which they were subjected to the following
protocol, all performed using the Flexivent ventilator. First, to stan-
dardize the lung volume (VL) history, the lungs were recruited with a
deep inspiration maneuver (DI) consisting of a 7-s pressure ramp from
zero PEEP to a peak pressure of 30 cmH2O followed by a 7-s hold at
peak pressure. We then recorded a dynamic PV loop from zero PEEP
at 1 Hz with a ventilator cylinder displacement � 9 ml to gather
information about the nonlinear elastic properties of the open lung
(see computational model analysis below). A second DI was per-
formed to fully recruit the lung, and this was immediately followed by
a derecruitability test, consisting of 5 min of ventilation with VT � 6
ml/kg and PEEP � 0 that was interrupted at 20-s intervals, starting 6
s into the ventilation, by a 2-s multifrequency (0.5–20.5 Hz) volume
perturbation (peak-peak ventilator cylinder displacement � 3 ml). The
input impedance of the respiratory system was determined from each
perturbation, and each impedance was fit with the constant-phase
model (22), which provided a value for lung elastance (H). H in-
creased progressively throughout each derecruitability test, which we
took to reflect the propensity of the lungs to derecruit over time (3–5,
43, 44). Finally, another DI was performed to gather information
about the recruitment characteristics of those lung units that had
closed during the preceding derecruitability test.

After the induction of acute lung injury, a DI was first applied to
standardize VL history, followed by the recording of a dynamic PV
loop at PEEP � 0. We then recorded four measurement sequences,
each consisting of a DI followed by a derecruitability test and then a
second DI. These sequences were separated by a 20-s period of 6
ml/kg ventilation. The four derecruitability tests were performed
sequentially at PEEP levels of 0, 3, 6, and 12 cmH2O with the DIs
applied above the prescribed PEEP to reach a maximum of 30
cmH2O.

Computational model. The experimental data were analyzed with
the aid of a computational model adapted from our previously re-
ported studies (11, 31, 46, 47). The model is composed of NUnits �
768 parallel respiratory units (RU), each connected to a common
airway junction. (This number of units was selected to provide a
smooth response during recruitment and derecruitment while main-
taining reasonable program execution times.) Each RU consists of a
terminal airway connecting to an alveolar compartment. Each alveolar
compartment has an identical nonlinear elastance unit (EUnit) given by

EUnit�VUnit� �

NUnits� EBase, if VUnit � VCrit ⁄ NUnits

EBase � EFac�NUnits[VUnit � �VCrit ⁄ NUnits�]�2, if VUnit�VCrit ⁄ NUnits
(1)

where VUnit is the compartment volume, VCrit is the volume at which
EUnit transitions from linear to nonlinear (volume dependent) behav-
ior, 1.1 � EBase � 1.4 cmH2O/ml is the low-volume (linear) elastance
equivalent to the value of H measured in the healthy animal, and EFac

is the rate constant for the volume-dependent elastance increase in the
nonlinear regime. The values of the parameters VCrit, EUnit, and EFac

were determined by fitting the model to experimental data (see
below). The elastance of the entire model (EL) thus changes with the
number of open units according to

EL�t� � �� open units	 1

EUnit
i �VUnit

i �
�
�1

(2)

Likewise, the airflow resistance for the entire model (Rmod) is

Rmod�t� � Runit�Nopen�t��1 (3)

with RUnit � NUnits·Raw. The airway resistance (Raw) 0.02 � Raw �
0.05 cmH2O·s·ml�1 was experimentally determined for each rat by
equating it to the Newtonian resistance parameter of the constant
phase model that was fit to each respiratory impedance measurement

(22). The magnitude of the airflow (Q̇), therefore, depended on the
pressure differential between the lung (PL) and ventilator (Pvent) in the
manner first described by Rohrer (39) so that the magnitude of the
tracheal flow rate was

�Q̇� �
R1 � �R1

2 � 4R2�PL � Pvent�
2R2

(4)

with R2 � 0.003 selected to match the peak expiratory flow (PEF)
rates measured in Sprague-Dawley rats by Wright et al. (53). The
constant R1 � Req � Rmod and the resistance of the ventilator tubing
(Req) was measured during the ventilator calibration procedure for
each rat so that 0.06 � Req � 0.1 cmH2O·s·ml�1.

|Q̇| is used to calculate the Paw � PL � dR1 |Q̇|, with d � 1 when
PL � Pvent, and d � �1 when PL � Pvent. The flow into each open RU
is then (Paw � EUnit VUnit)/RUnit. The VL is defined as the sum of the
volumes of all open RUs so that PL � EL VL. This formulation allows
for gas to be trapped when an RU derecruits, such that the volume of
the closed unit is not counted toward the total VL.

When simulating pressure-controlled ventilation, the model was
driven with a prescribed pressure waveform. For volume-controlled
ventilation, the model was driven with a prescribed volume waveform
operating on a shunt gas elastance (Egas) of 14 � Egas � 27
cmH2O/ml, representing the compressibility of the air in the Flexivent
cylinder. Egas was determined during the equipment calibration pro-
cedure performed before each experiment (43).

To simulate a derecruitability test, it is necessary to take the
dynamics of recruitment and derecruitment into account. This is
achieved using virtual trajectories, as our laboratory has previously
described (11, 30, 31, 47), that provide an empirical representation of
the way in which recruitment and derecruitment of lung units depend
on both pressure and time. In brief, each RU is associated with a
virtual trajectory variable 0 � x � 1 that increases at a rate SO (PO �
Paw) when Paw is greater than a critical opening pressure (PO), where
SO is the opening velocity constant. Conversely, when Paw is less than
the critical closing pressure PC, then x decreases at a rate given by the
closing velocity constant (SC). The recruitment and derecruitment
dynamics of the model are governed by the probability distribution
functions from which PC, PO, SC, and SO are randomly drawn.

Based on a previous study in mice with VILI (47), we employed
two groups of RU having different distributions for PC, PO, SC, and
SO. One group contained (1 � �)NUnits units, with SC and SO drawn
from exponential probability density functions given by f(x) � ex/�c/�c

and f(x) � ex/�o/�o, respectively, where �O � 0.1�C (31). �c and �o are
the scale parameters for the distribution of closing and opening
velocities, respectively, and � defines the fraction of the lung in each
group of respiratory units that exhibits similar recruitment character-
istics. PC was drawn from a Gaussian distribution having mean �C

and SD 	C (11, 12, 23, 38, 47), while PO � PC � 
P. The parameters
�C, �C, 	C, and change in pressure (
P) were determined for each rat
during the model fitting process (see below).

The other population of �NUnits RU had �C � 0.075 and �O �
0.75, with PC drawn from a uniform probability density function on
the interval (16, 30) to match the long-timescale closure observed in
the derecruitment tests and the rapid reopening during DIs. To
accommodate recruitment, which was observed during the 14-s DIs
and not during 55 breaths/min ventilation, we set PO � PC and define
a latency time parameter for each RU (TS), which is drawn from a
Gaussian distribution with a mean �T � 0.45 s and SD 	T � 0.05 s.
When Paw � PC, the virtual trajectory decreases at a rate dx·dt�1 �
SC, as described above. However, Paw must remain above PO for a
period TS before the virtual trajectory is allowed to increase at a rate
dx/dt � SO (PO � Paw). The model equations were integrated using
the forward Euler method at a simulation frequency of 500 Hz.

Model fitting. The free model parameters that were evaluated
during the model-fitting procedure are listed in Table 1. The model
was fit to the experimental data from each rat both before and after
Tween instillation using a parallel pattern search (PPS) optimization
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algorithm (24–26, 29, 50) as our laboratory has described previously
(46). Briefly, this algorithm seeks to minimize an objective function
quantifying the differences between the predicted and measured
pressures, volumes, and elastances. At each iteration of the PPS
algorithm, this objective function is examined for every one of the
2,187 distinct combinations of the 7 parameters listed in Table 1. The
seven-dimensional parameter grid is composed of the current param-
eter estimates as well the current values, both plus and minus the
current grid step size. If the value of the objective function at any of
these points is less than its current minimum value, then the center of
the multidimensional search grid is relocated to the position of the
new minimum. Otherwise, the grid spacing is reduced by 40% for the
next iteration. The search for the global minimum of the objective
function is terminated when the grid step size has been reduced
10-fold or after 30 iterations.

For each animal, under either baseline conditions or postinjury, the
computational model was fit to all physiological data simultaneously
by minimizing the composite cost function

Y � EDI · �ntDI · NDI��1 � EPV · �ntPV · NPV��1 � 5EDTest · NDTest
�1

(5)

where EDTest is the root mean square (RMS) error between the
measured and calculated elastance values at each simulation point
during the derecruitability tests. EPV is the RMS pressure error during
the volume-controlled dynamic PV loops, and EDI is the RMS error in
the delivered volume during the pressure-controlled DI maneuvers.
NDI, NPV, and NDTest are the numbers of DI maneuvers, dynamic PV
loops, and the derecruitability test elastance measurements, respec-
tively, that were performed in a given rat. For the healthy rats NDI �
2, NPV � 1, and NDTest � 13, while for the injured rats NDI � 8,
NPV � 1, and NDTest � 52. The number of time points in each DI
maneuver ntDI � 6,000, and the number of time points in each PV
loop ntPV � 525.

To reduce the computational cost of the simulations, we retain the
computed values of Y (Eq. 5) at each step. If an identical parameter
combination is used in a subsequent PPS step, the retained Y is used
to avoid reevaluating the model. For each animal and treatment
condition (healthy or injured), we use a constant value to seed the
random number generator that generates the distributions of PC and SC

throughout the PPS model evaluations and model simulations (de-
scribed below). This approach improves convergence of the PPS
algorithm because Y computed for a given set of parameters remains
constant, removing a small amount of random noise from the error
surface. Fifty iterations of the model using the best-fit parameters with
the random number generator seed based on the wall clock time
provided a coefficient of variation in Y of 0.044 for the healthy
simulations and 0.13 for the injured cases. The mean of the SD in
open fraction at each time point was 0.012 for both the healthy and
injured rats.

Model simulations. Once the model was fit to each of the rats, we
assessed the potential for producing volutrauma and atelectrauma
during mechanical ventilation under both baseline and postinjury

conditions. We first performed this investigation for the low-VT

ventilation (LTVV) that is now standard of care for ARDS patients,
but which was adapted here to be appropriate for the rat. The LTVV
had an inspiratory-to-expiratory duration ratio of 1 to 1.5, a rate of 55
breaths/min, and a VT of 6 ml/kg, achieved by applying an inspiratory
pressure (PI) ramp beginning at the applied level of PEEP and
increasing for 0.05 s at the rate necessary to achieve the desired VT.
The PI was determined by iteratively performing recruitment maneu-
vers and ventilating until the lung open fraction stabilized to achieved
the desired VT � 6 ml/kg. Expiration was passive against the pre-
scribed PEEP after ramping down for 0.05 s from the peak PI.

We also simulated airway pressure release ventilation (APRV)
which consists of periods of sustained PI of inspiratory time duration,
interrupted periodically by brief expiratory phases of duration de-
signed to achieve a desired end-expiratory flow (EEF) as a percentage
of PEF. An EEF-to-PEF ratio (EEF/PEF) of 75% is well established
as the appropriate clinical setting for APRV (21, 27). We investigated
EEF/PEF ranging from 75% (corresponding to a relatively short
expiratory duration) to 10% (corresponding to a longer expiratory
duration). In a second series of simulations, we investigated the
effects of 5 � PI � 50 cmH2O for an EEF/PEF of 75%. In each case,
inspiratory time was iteratively adjusted to achieve a minute ventila-
tion of 330 ml·kg�1·min�1, which was identical to that delivered with
LTVV (measured at steady state following a DI). The expiratory
pressure (PE) was 0 cmH2O in all cases with a ramp of 0.05 s between
PI and PE to represent the noninstantaneous transition between these
two pressures that is observed experimentally (27, 28). Because of the
high expiratory flows occurring early in expiration in APRV, we
increased the simulation frequency to 2,000 Hz for all model simu-
lations to improve the accuracy of our calculations.

RESULTS

Figure 1 shows data and model fits obtained in a represen-
tative rat. When the animal was healthy, its compliance de-
creased above the predicted VCrit � 8.6 ml, presumably due to
strain stiffening of the lung tissues at high volumes (Fig. 1A).
In contrast, after the rat was injured, the slope of the PV curve
increased for Paw � 15 cmH2O, indicative of ongoing recruit-
ment. The model calculated that the open fraction of the lung
in the injured animal increased from 0.28 to 0.96 between
Paw � 15 cmH2O and 30 cmH2O. Figure 1B shows the
dynamic PV loop for the same animal, after injury, illustrating
the marked hysteresis that resulted from the inspiratory recruit-
ment of closed lung units that reclosed during the subsequent
expiration. Figure 1C shows the corresponding time courses of
H during each derecruitability test, again after the animal was
injured.

Figure 2 shows the derecruitability test data and model fits
for seven of the rats we studied. Two of the 10 animals in the
experiment were excluded due to incomplete data, and a third
animal was excluded because the baseline H measurements
were more than 5 SDs above the mean of the remaining 7
animals. These three animals were also excluded from all
subsequent analyses. The data in Fig. 2 are similar to those of
the single rat shown in Fig. 1C and show that H increased
progressively with time during each of the individual dere-
cruitability tests, reflecting progressive closure of lung units (2,
6). There were dramatic increases in both the magnitude and
rate of change of H at PEEP � 0 cmH2O in the injured rats
compared with the healthy animals, indicating a correspond-
ingly increased magnitude and rate of derecruitment. The fits
of the computational model to these data provide estimates of
the mean open fraction to be 0.67 for the healthy animals with

Table 1. Initial value, lower and upper bounds, and the
initial grid step size for the parameters determined using the
numerical optimization algorithm

Parameter Starting Value Minimum Maximum Initial Grid Step Size

EFac, cmH2O/ml3 0.04 0.01 0.2 0.015
VCrit, ml 8 4 12 1.5

P, cmH2O 6 0 18 2
�C, cmH2O 5 �1 14 2.5
	C, cmH2O 3 0.5 9 2.5
�C, s/cmH2O 50 0.01 100 12.5
� 0.2 0 0.8 0.15

See text for definition of terms.
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PEEP � 0 cmH2O. Following injury, the mean open fraction
estimates are 0.33, 0.51, 0.66, and 0.80 for PEEP � 0, 3, 6, and
12 cmH2O, respectively.

The increased derecruitability of the injured lung is reflected
in the best-fit model parameter values (Table 2). A significant
difference was found between the healthy and injured rats for
�C, indicating that derecruitment and recruitment both oc-
curred more rapidly in the injured animals. Furthermore, since

P was also significantly increased, the reopening occurred at
higher pressures in the injured animals. Finally, the transition
to nonlinear elastance occurred at a lower VL, Vcrit, in the
injured animals (Table 2).

Figure 3A shows model predictions of lung distension for
both healthy (black) and injured (red) rats during LTVV over
a range of PEEP levels from 0 to 25 cmH2O. The degree of
lung distension is a measure of the extent to which the lung
tissues are stretched and is defined here as the ratio of the
lung’s volume to its open fraction (i.e., distension increases as
a given volume is accommodated by a decreasing fraction of

the total lung tissue). Figure 3 shows both the maximum value
of lung distension achieved at the end of inspiration and the
minimum value achieved at the end of expiration. Also shown
is the lung distension at which the PV behavior of the lung
tissue transitions from linear to nonlinear in the healthy rats
(black dotted line). Interestingly, this transition occurs at a
lower distension in the injured rats (red dotted line) than in the
healthy animals, because injury changed the apparent proper-
ties of the tissue so that they became nonlinear at lower
volumes (Table 2), likely as a result of alveolar collapse due to
surfactant inactivation and air displaced by the instilled Tween.
Figure 3B shows corresponding plots for the rats ventilated
with APRV, with EEF/PEF ranging from 10 to 75%, corre-
sponding to progressively decreasing expiratory durations.

The maximum and minimum values of open fraction pre-
dicted by the computational model for both healthy and injured
rats are shown for LTVV and APRV in Fig. 4, A and B,
respectively. LTVV always avoids significant intratidal recruit-
ment (Fig. 4A), but at the expense of incomplete recruitment,
as PEEP decreases below its maximum value of 25 cmH2O. In
contrast, APRV always achieves full recruitment at end inspi-
ration due to the high prescribed PI, but, as the EEF decreases
(i.e., longer expiratory durations), the degree of intratidal
derecruitment increases (Fig. 4B). What is particularly striking
about these predictions is that, while intratidal recruitment is
always rather small in healthy animals (Fig. 4B, black), longer
durations of the expiratory phase in the injured rats can result

Table 2. Best fit parameters for healthy and lung-injured
rats

Parameter Healthy Rats Injured Rats

EFac, cmH2O/ml3 0.048 � 0.012 0.047 � 0.010
VCrit, ml 9.22 � 0.78 5.81 � 0.49*

P, cmH2O 3.62 � 1.29 12.77 � 1.96*
�C, cmH2O 0.77 � 0.13 2.65 � 0.79
	C, cmH2O 2.15 � 0.96 5.61 � 0.59
�C, s/cmH2O 8.83 � 2.84 54.28 � 12.64*
� 0.15 � 0.055 0.08 � 0.026

Values are means � SE. *Significant difference between the parameter
values following lung injury identified with paired t-tests ( � 0.05).
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in nearly one-half the lung closing and reopening with each
breath (Fig. 4B, red), highlighting the clinical importance of
using APRV with its proper setting of EEF/PEF � 75%. Both
modes of ventilation converge on the same recruitment char-
acteristics either as PEEP increases in LTVV (Fig. 4A), or as
expiratory duration shortens in APRV (Fig. 4B).

In Fig. 5, we compare the recruitment and spatially averaged
open lung distension characteristics of LTVV as a function of
PEEP, as well those of APRV over a range of PI with EEF/PEF �
75%. For a given peak PI, both modes of ventilation produce
similar levels of spatially averaged distension of the open lung,
but the excursions in distension with APRV are lower than
those of LTVV at low PEEP and higher at high PEEP (Fig.
5A). There are also differences in recruitment between the two
modes of ventilation (Fig. 5B), the most noticeable being that
LTVV produces substantially less open lung at low pressures
compared with APRV. At the high PI typically used clinically
(�25 cmH2O), APRV again maintains more open lung, but
only by �6%, which may not be clinically significant.

DISCUSSION

The ARDSnet clinical trials (9) demonstrated improved
outcomes in ARDS patients ventilated with a VT of 6 ml/kg
ideal body weight, which may be decreased to 4 ml/kg to

prevent plateau pressures from exceeding 30 cmH2O. The
clinical protocol also stipulated that PEEP and inspired O2

fraction should be set to achieve 55 � arterial PO2 � 80 Torr,
and that respiratory rate should be adjusted to balance pH.
These criteria are based on empirical findings and are not
linked directly to the underlying mechanisms that cause VILI,
even though they are rationalized by the notion of ventilating
the “baby lung” and thus of reducing volutrauma by limiting
the injurious effects of over-stretching the healthier lung re-
gions (9). Also, despite the documented survival benefit of the
ARDSnet trial, there has been little additional evidence that
LTVV coupled with control of other factors, such as PEEP,
mean Paw, or ventilator mode, correlates with a reduction in
volutrauma as a marker of overdistension (8, 9, 15, 33, 35, 42,
49, 54).

A limitation of the ARDSnet ventilation protocol is the
universal application to all ARDS patients, despite the fact that
this patient population is highly heterogeneous. The shortcom-
ings of this approach, and the efficacy of personalized venti-
lation determined via respiratory mechanics, is highlighted in a
recent clinical investigation involving H1N1 influenza patients
diagnosed with ARDS and refractory hypoxemia and referred
for extracorporeal membrane oxygenation (20). In that study,
respiratory system elastance was partitioned into lung and
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chest wall components, and PEEP was titrated to achieve a
transpulmonary pressure of �25 cmH2O. In subjects with
abnormally high chest wall elastance, this lead to PEEP � 22
cmH2O and plateau pressures approaching 40 cmH2O. These
high ventilation pressures resolved the refractory hypoxemia
and the need for extracorporeal membrane oxygenation rescue
in all of the patients in this subgroup.

Furthermore, the measures described in the ARDSnet pro-
tocol are only implemented once ARDS has developed and
thus represent a reactionary measure rather than a proactive
strategy. It is thus reasonable to suppose that improved ap-
proaches to ventilating the injured lung would avoid these
limitations by basing decisions on the assessment of the two
key mechanisms believed to contribute to VILI, namely over-
distension of parenchymal tissues and repetitive recruitment of
closed lung units, and by preemptive avoidance of the progres-
sive functional degradation associated with clinical ARDS
(45). However, tissue overdistension and repetitive recruitment
cannot be monitored directly in the lungs of an ARDS patient.
Instead, these injurious processes must be inferred from mea-
sureable quantities in which they are reflected. Fortunately,
pressure and flow at the airway opening are perfect candidates
in both regards. Nevertheless, patterns of overdistension and
recruitment can only be extracted from Paw and airway flow
via the intermediary of a computational model of lung mechan-
ical function. On the basis of our laboratory’s previous studies
(10, 44, 46, 47), we identified a suitable model for this purpose
and found that it can accurately recapitulate the mechanical
behavior of the injured lung during a variety of different
maneuvers that collectively reveal its dynamic and nonlinear
behavior (Figs. 1 and 2).

To the extent that the mechanisms represented in our com-
putational model correspond to those present in a real lung, we
are then able to make predictions about the injurious processes
occurring within a given lung during a prescribed regimen of
mechanical ventilation. In the present study, we focus on two
particular ventilation modes. The LTVV mode now widely
serves as a standard of care due to the success of the ARDSnet
trial (9). APRV is often considered a rescue mode for patients
with established ARDS rather than a primary mode of venti-
lation (7, 16, 21), but it has been investigated as a primary
mode and has been shown with early application to signifi-
cantly reduce ARDS incidence and mortality (7). In the present

study, we made predictions concerning these two modes of
ventilation in rats because the model was fitted to data mea-
sured in rats, but there is no reason in principle why the same
approach could not be used in human patients once the neces-
sary dynamic lung function data are in hand.

First, we compared the degree of tissue distension occurring
with LTVV vs. APRV (Fig. 3) and identified some immedi-
ately obvious differences. Most importantly, while distension
is roughly proportional to PEEP with LTVV and does not
achieve high levels until PEEP is correspondingly high (Fig.
3A), distension is always relatively high with APRV (Fig. 3B)
because we maintain PI � 36 cmH2O. At corresponding
plateau pressures, LTVV and APRV demonstrate an equivalent
level of spatially averaged distension as shown in Fig. 5.
Furthermore, the excursion in tissue distension during a breath
(i.e., from end-expiration to end-inspiration) is relatively un-
affected by PEEP in LTVV because of the fixed VT. In
contrast, the range of tissue distension is highly dependent on
the duration of the expiratory phase in APRV, where VT is
dependent on the targeted EEF/PEF, and this applies to both
normal and injured lungs. For example EEF/PEF of 75 and
10%, respectively, provide average VT values of 10.7 and 26.5
ml/kg in the injured animals for PI � 36 cmH2O. However,
when the EEF/PEF is held at 75%, the distension range
remains roughly constant at higher values of PI, but is de-
creased at low PI due to the reduced VT values (Fig. 5A).
LTVV and APRV also differ somewhat in their recruitment
characteristics (Fig. 5B), although these differences are not
particularly large, except perhaps at low minimum pressures
where LTVV allow for substantially more derecruitment than
APRV (Fig. 5B).

On the other hand, APRV with an extended duration of PI �
36 cmH2O is generally better than LTVV at keeping the lungs
recruited, as shown in Fig. 4, B and A, respectively. Because of
both the pressure and time dependence of recruitment, APRV
in the healthy lung maintains full recruitment during the
plateau phase with very little derecruitment at all levels of EEF
(Fig. 4B). Inspiratory recruitment also remains complete in the
injured lung, but derecruitment during expiration increases
rapidly with increasing expiratory duration. This demonstrates
why it is so important to use APRV with the proper setting of
EEF/PEF � 75%; when EEF/PEF is set improperly at 10%, the
model predicts a substantial amount of intratidal recruitment
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and derecruitment that could be very damaging to the lung
tissues. In contrast, LTVV predicts minimal intratidal recruit-
ment and derecruitment, but at the expense of a substantial
residual level of derecruitment at end-inspiration until PEEP
reaches at least 15 cmH2O (Fig. 4A). Since there is no benefit
to longer expiratory times with APRV, we simulated the
effects of varied PI with the PEF/EEF fixed at 75%, consistent
with previously published guidelines (21). To facilitate direct
comparison with the LTVV simulations, we plot the predicted
spatially averaged distension and open fraction for the injured
rats against the prescribed PI in Fig. 5, which shows that
maximum of the mean open lung distension is directly related
to PI, regardless of the mode of ventilation. For PI � 25
cmH2O, where such injured lung would likely be ventilated
clinically, our predictions indicate that, for a given level of
distension, APRV provides greater recruitment than LTVV,
but without increasing overdistension.

These predictions thus show that LTVV and APRV have
complementary strengths and weaknesses, which are strongly
dependent on the functional state of the lung and the applied
mechanical breath profile. When directly comparing the two
modes at comparable levels of maximum tissue distension in
the injured lung (Fig. 5), we predict APRV will improve
recruitment in the range of PI values that would be applied to
the injured lung. However, the range of distension and open
fraction are less with LTVV. Precisely how these various
factors translate into clinical outcomes remains to be deter-
mined, because we do not yet have a way of equating the rate
of generation of VILI to some function of overdistension,
intratidal recruitment and distension, and maximum amount of
open lung. Nevertheless, the modeling methodology we have
employed here establishes a basis on which an injury cost
function for VILI might be developed. This supposition, how-
ever, must be viewed relative to a number of important limi-
tations of our study.

Perhaps the most important limitation is the fact that we
have based our analysis of the relative merits of LTVV and
APRV on a computational model that contains a number of
critical assumptions. We assume, for example, that overdisten-
sion applies equally to all regions of open lung because we
assume that these regions all experience essentially the same
distending pressure due to homogeneous resistance, and that
each alveoli has an identical stress-strain relationship (e.g.,
equal VCrit and EBase). There are numerous factors that this
ignores, including gravity-dependent differences in pleural
pressure that play an important role in clinical ARDS and
variations in the local stress-strain behavior of the parenchyma
resulting from ventilation inhomogeneity. In addition, our
model predictions are representative of a passively ventilated
patient and, therefore, do not account for the effects of spon-
taneous breathing, which has been shown during APRV to
improve recruitment (52), end-expiratory VL (51), and venti-
lation of the dependent lung (36). Thus there may be additional
benefits to APRV in patients exhibiting spontaneous inspira-
tory efforts that are not included in our predictions. Trying to
account for these effects would greatly complicate the model
and model fitting, and it is unclear that the gains would be
worth the effort. Perhaps even more critical is our assumption
of a mechanism for the time dependence of recruitment and
derecruitment based on the use of virtual trajectories (10, 31).
The behavior of these virtual trajectories bears distinct resem-

blance to processes involved in airway collapse and reopening
that have been studied extensively in the laboratory (19, 37),
which perhaps lends some credibility to their use in the present
application. Nevertheless, they remain an essentially empirical
mechanism.

Another potential and important limitation of our study
concerns is translatability to the human patient. For example,
we have neglected gravitational gradients in the present study,
because these are essentially unimportant in the small lung of
the rat, but they are significant in a human lung. Also, finding
model parameter values that accurately embody recruitment
and derecruitment dynamics requires perturbing the lung ex-
perimentally under a rather wide amplitude range of pressure,
flow, and volume (Figs. 1 and 2). It remains to be seen whether
it is possible to safely obtain a rich enough data set for this
purpose in human patients, particularly those with injured
lungs. One promising approach might be to use Paw and
airway flow data collected during variable VT ventilation, a
new approach to mechanical ventilation that has been shown to
have certain physiological advantages over conventional ven-
tilation and that we have recently shown allows the dynamics
of recruitment and derecruitment to be identified (46).

In summary, we have shown in rats that measuring Paw and
airway flows during a sufficiently rich set of dynamic pertur-
bations allows the identification of a computational model
embodying the injurious mechanisms of both tissue overdis-
tension and repetitive recruitment. We then used the model to
simulate lung distension and recruitment during LTVV with a
range of PEEP levels and during APRV with a range of
expiratory durations and PI values. These simulations indicate
that LTVV produces somewhat less intratidal recruitment than
APRV. However, when APRV is properly set with EEF/PEF �
75% at clinically relevant pressures in the injured lung, it
achieves a higher level of open lung than LTVV and does not
result in additional tissue distension. Our model thus demon-
strates that both the timing and magnitude of the pressures
applied during mechanical ventilation play a role in recruit-
ment, while the spatially averaged maximum tissue distension
is a function of PI. Taken together with our porcine model of
ARDS, which exhibited improved oxygenation and lung com-
pliance when ventilated with APRV compared with LTVV (40,
41), and a recent meta-analysis that suggests that properly set
APRV appears to reduce ARDS incidence and in-hospital
mortality (7), our simulations suggest that the protective ben-
efits of recruitment may outweigh the damage caused by tissue
overdistension.
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