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CRITICAL REAPPRAISAL OF VENTILATOR–LUNG
INTERACTIONS

Clinicians recognize that although mechanical ventilation is
a necessary tool in managing critically ill patients that develop
acute respiratory distress syndrome (ARDS), it can simultane-
ously induce (16) and propagate injury in the lung it is meant
to support (12, 40). The mechanism of this ventilator induced
lung injury (VILI) is thought to be related to dynamic strain
and cyclic alveolar collapse and reopening (16, 22, 34, 50);
however, an all-encompassing single mechanism for VILI
remains elusive.

Current ventilator management strategies are guided primar-
ily by macroparameters measured at the level of the ventilator
[plateau pressure (Pplat), tidal volume (Vt), and positive end
expiratory pressure (PEEP)] and are assumed to be key drivers
for propagating or limiting lung injury during mechanical
ventilation. These “macroventilatory” settings reflect values
applied to and averaged across the whole lung and thus may
not be accurate regional indicators of the lung’s microenviron-
ment: alveoli and alveolar ducts. The results of the 2000
ARDSnet (1) study established the macroventilation settings
using low Vt and limiting Pplat. These results have not,
however, been replicated in subsequent clinical studies (25,
46), in part because few clinicians adhere strictly to the low Vt
guidelines set forth (3). We also postulate that these macroven-
tilator parameters are too insensitive to accurately and consis-
tently determine the pathophysiologic impact of mechanical
ventilation on the pulmonary parenchyma. Without decon-
structing and understanding how the mechanical breath im-
pacts the pulmonary microenvironment, reducing VILI and
ARDS mortality will be a difficult and inconsistent task.

LIMITATIONS OF CURRENT PROTECTIVE VENTILATION

Conceptually, the lung is often illustrated by a single com-
partment balloon model in which reducing stress (airway
pressure and Vt) reduces volumetric distortion and strain in the
balloon wall. This approach, however, is an oversimplification

of the complex geometry of the finely partitioned, interdepen-
dent, and four-dimensional behavior of the human lung at the
level of the microenvironment (22). The balloon model also
does not account for lung heterogeneity, a hallmark of ARDS,
as collapsed or edema-filled alveoli generate regional stress,
inducing strain on the neighboring open alveoli (29, 36).

Mead et al. (24) determined that there is a 13% increase in
stress in nonuniform alveoli compared with a uniform system.
The magnitude of the stress increase is dependent on several
factors, including the number and degree of collapsed alveoli,
alveolar surface tension and edema, and location of the alveoli
(peripheral vs. central and proximity to a duct). Thus, in lungs
with regional inhomogeneity, a delivered Vt will not distribute
evenly across the lung parenchyma but will preferentially
distribute to areas of higher compliance (9, 54). This mechan-
ical stress causes nonuniform stretch of the epithelial cells that
alters the function and signaling of the cells (44, 51). This, in
turn, can injure cells and cause apoptosis (43) and alter sur-
factant secretion (51) and permeability (8).

These regions of stress-rising alveoli concentrate strain,
reaching levels up to quadruple that of global strain (20, 35).
These unstable zones serve as a propagation point for lung
injury (41) as they result in amplified strain on the adjacent
open alveoli (24), leading to additional inflammation (2) and
alveolar cell membrane rupture (2, 49).

Although it is well understood that heterogeneity exists at
the macroscale (9), it is inferred that there is also alveolar
heterogeneity resulting from low lung volume and edema (23).
In a study of alveolar behaviors using laser-scanning confocal
technique, Namati et al. (28) determined that there are three
distinct types of alveoli, further compounding regional alveolar
heterogeneity. These include alveoli that distend with tidal
inflation, those that do not, and those that collapse at expiration
(28). This is magnified in the setting of lung injury with loss of
surfactant function and with higher rates of derecruitment (23).
While stabilizing and promoting alveolar homogeneity is of
critical importance, there are no direct methods of assessing
alveolar micromechanics (37).

Human and experimental data suggest that excessive tissue
strain may occur even when using low “tracheal Vt” (volume
measured by the ventilator at the level of the trachea) if the
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“baby lung” surface area is too small to accommodate the
applied stress (17, 22, 45). The tracheal Vt does not indicate
where or how much of that Vt is being distributed to different
regions of the lung and does not necessarily reflect the tidal
distension of individual alveoli (17, 42, 45). This was demon-
strated in an animal study using in vivo microscopy, in which
a low tracheal Vt of 6 ml/kg (macroventilation) was applied
and the alveolar Vt (microventilation) was found to vary with
changes in PEEP, with significantly higher alveolar Vt and
microstrain when PEEP �10 cmH2O (22). However, in a fully
open lung with recruited and homogenous alveoli, a large
tracheal Vt (12 ml/kg) resulted in the lowest alveolar Vt and
microstrain (Fig. 1) (22). The lung specific elastance and tissue
stress directly mediates the degree of tissue strain, which itself
is determined by the surface area available to accommodate the
force of the mechanical breath (7). The lung specific elastance
is modulated by a combination of alveolar surface tension and
the degree of alveolar wall crumpling (32). Thus, in a collapsed
lung with a lower alveolar surface area available to accommo-
date the mechanical breath, there is greater stress and strain on
the alveoli and alveolar ducts. Follow-up efficacy studies in
animals corroborated these findings, in which a traditionally
accepted lung-protective approach with targeted macroventila-
tory parameters (e.g., low Vt and limited Pplat) was compared
against a microventilatory approach focused on maintaining
alveolar homogeneity and stability. The traditional lung-pro-
tective (macroventilatory) approach led to an increased inci-
dence of VILI compared with the microventilatory approach,
which had higher Vt and Pplat (21) but lower alveolar Vt and
microstrain (22).

Despite many clinical trials and research investigating
“treatment” of established ARDS, the results have been largely
negative and overall mortality remains unacceptably high (3,
33). Although formally defining ARDS has been important for
standardization (4), it has led to ARDS being viewed as a
binary construct: it is either present or not (38), when in fact it
is a “syndrome” that may be categorized by etiology (pulmo-
nary vs. extrapulmonary) (30), severity or progression (15),
responsiveness to treatment (6), or patient pheno/genotype
(47). Despite the differences in these subgroups, most clinical
trials of ARDS analyze all patients cumulatively (1, 5, 14, 25,
26, 46, 52). Therefore, strict adherence to rigid macroventila-
tory guidelines based on prior clinical trials of heterogeneous
patient populations may not be adequate when treating the
individual patient (18, 47, 48). Instead, an understanding of the
impact of mechanical ventilation on the microenvironment
may be the only parameter universal to all patients.

Understanding the effect a given mechanical breath has on
the individual alveoli is of critical importance to recognize the
degree of stress to which the alveolus is exposed. The majority
of what is known about alveolar micromechanics is based on in
vivo and in vitro models (27, 31, 44), but there are no direct
methods of assessing the microenvironment in humans in real
time. Although there is limited knowledge of alveolar micro-
mechanics (37), it is at the level of the alveolus where the
critical physiology unfolds, where injury can be most pro-
nounced, and where gas exchange occurs. Thus greater phys-
iologic understanding of alveolar micromechanics and transla-
tion with complex physiological reasoning and directed re-
search is indicated (2).

Fig. 1. Comparison of tracheal tidal volume (tVt; tidal volume measured at the level of the ventilator) vs. alveolar tidal volume (aVt; measured by an air space
analysis of alveoli visualized with an in vivo microscope). As the PEEP increases (left), there are a greater number of open alveoli available to accommodate
the tracheal tidal volume. Thus the alveolar tidal volume decreases with increasing PEEP though the tracheal tidal volume remains constant. Using a
time-controlled mode (right), a shorter expiratory duration leads to improved alveolar stability and decreased end-expiratory alveolar collapse. Despite relatively
large tracheal tidal volumes, there are lower alveolar tidal volumes with shorter expiratory times as the tVt are being distributed across a greater number of open,
homogenous alveoli. [Representation not based on data but adapted, with permission, from Kollisch-Singule et al. (22).]
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EVIDENCE FOR NONLINEAR RELATIONSHIP IN THE
CIRCULATION: A PARALLEL CONCEPT

The need to understand how macrosettings impact the mi-
croenvironment is evident in both the circulation and ventila-
tion systems. The Surviving Sepsis Guidelines recommend
maintaining mean arterial pressure (MAP) above 65 mmHg
(11), although there is no clear evidence that this pressure will
increase capillary perfusion nor that the same MAP would be
effective for all patients (39). Just as the optimal PEEP re-
quired to recruit and stabilize alveoli for an individual patient
remains ambiguous, the MAP threshold optimal for recruiting
and maintaining perfused capillaries is also unknown. For
instance, Zakaria et al. (53) demonstrated that intestinal perfu-
sion varied considerably despite maintaining a consistent MAP
in a hemorrhagic shock model.

In ARDS, one of the goals of mechanical ventilation is to
provide enough alveolar surface area to allow for adequate gas
exchange. This is analogous to sepsis, where the goal of
resuscitation is to restore the microcirculation to optimize
tissue perfusion, particularly in the setting of high metabolic
demand (10). Similar to the lung’s heterogeneous reduction in
functional alveolar surface area available for gas exchange that
characterized ARDS, microvascular derangements in sepsis are
often associated with a heterogeneous reduction in capillary
surface area, which often persists despite targeting macrocir-
culatory parameters, such as MAP or cardiac output (CO) (10).

Ideal microcirculation involves distribution of CO across
open, perfused capillaries to satiate tissue needs; however, the
reality is that CO will preferentially distribute to the microcir-
culation of least resistance regardless of metabolic demand.
This is not unlike the microenvironment of the respiratory
system, where a delivered Vt will be distributed preferentially
across the distal airspaces with lower resistance and more
compliant alveoli in a heterogeneous lung. Targeting a macro-
circulatory parameter such as MAP with the use of vasocon-
strictors can potentially exacerbate tissue hypoperfusion in
patients with inadequate intravascular volume by reducing
blood flow (13). Just as reducing the CO will decrease micro-
circulation, reducing Pplat or Vt may paradoxically redistribute
stress in the microenvironment resulting in increased dynamic
strain in the more compliant lung regions.

CONCLUSIONS

It is essential to understand the impact of a mechanical
breath on the “microenvironment,” by calibrating the effect of
the “macroventilator settings” with the dynamic changes to the
alveoli and alveolar ducts. This concept is analogous to macro-
circulatory hemodynamic parameters that clinicians routinely
use for assessing tissue perfusion when the critical physiology
is occurring in the microenvironment of the capillary network.
We propose that just as macrocirculatory parameters are poorly
correlated with tissue microcirculation and prognosis, mac-
roventilator parameters are likewise poorly correlated with
alveolar and alveolar duct microventilation and ultimately
outcome (13, 19).

Understanding of the impact of mechanical ventilation on
the lung is currently restricted by our reliance on and accep-
tance of macroventilator parameters to guide patient treatment.
Rather than treating the ventilator and macroventilator param-
eters, a series of physiologic studies are needed that link

anatomical, physiological, biochemical, and computational
methods so that we may target the microenvironment as the
end point of lung resuscitation.
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